Approaching the 5th anniversary of the 2002 M7.9 Denali Fault Earthquake

Natalia A. Ruppert
Alaska Earthquake Information Center
Geophysical Institute
University of Alaska Fairbanks
Seismic Hazards Safety Commission
September 18, 2007

Photo by W. Wallace
Earthquake Sequence

- Started with the M6.7 Nenana Mountain earthquake on October 23, 2002
- The main Denali event on November 3, 2002 started with the M7.2 thrust sub-event on previously unknown splay fault
- Continued as right-lateral strike slip event along main Denali fault
- Rupture transferred onto Totschunda branch
Internet Community Intensity Map

Microseismic study

- Not detailed enough
- Maximum Intensity VIII

By A. Martirosyan, 2003
- Maximum reported Intensity - IX
Measured Surface Offsets

- Total of 342 km of surface faulting
- Maximum horizontal 8.8 m
- Maximum vertical ~2.8 m

Haeussler et al., 2004
Directivity Effects

Energy from the largest subevent (#3) propagated mainly to the southeast.
Plot by A. Frankel (USGS)
Co-seismic Motions (from GPS)

By S. Hreinsdottir et al., 2003
Co-seismic Motions (from GPS)

S. Hreinsdottir, 2006
Sub-surface Slip Distribution

- Dreger et al., 2002-2003
- Based on regional seismic data and GPS displacements
ShakeMap

- Produced within days of the quake
- Based on ~50 measurements in the state (2/3 from Anchorage)

- By D.Wald (USGS), 2003-2004
- Composite dataset: ground motion measurements, microseismic survey, slip distribution
Distal effects

- Felt as far as Washington State (~1,000 km away)
- Triggered seismicity at volcanic and geothermal centers (up to 3,000 km away)
- Seiches in distant lakes and pools (up to 3,000 km away)
Early Aftershocks

2 hours of data = 40+ M>=4 aftershocks

After S. Estes and S. McNutt
Aftershock Statistics

Cumulative Number:
>40,000 Recorded aftershocks

Magnitude vs log time, minutes

Magnitude of completeness

Decay rate

aftershocks1.mat - b(t), n_i = 150

Mc=1.5
Regional Seismicity

Before 2002
Regional Seismicity and Recorded Aftershocks
b- and **a-values** for the aftershock sequence

- **b-value**
- logN = a.bM
- **a-value** (activity rate)

- **b-value** is mapped on 0.1x0.1° grid with the nearest 150 events per sample.
- The highest **b-values** (b=1.4) are found near the epicenter. The eastern part of the rupture is characterized by much lower **b-values** (b=0.7).

- **a-value** is computed for volumes of radii 5 km. The highest activity is near the epicenter. The eastern part of the rupture is characterized by lower aftershock productivity.
Seismicity rate changes

- We observe a significant increase in the seismicity rate within the epicentral region of the M7.9 event (node A).
- A less sharp decrease in the seismicity rate is observed ~100 km north of the M7.9 epicenter (node B).

- Seismicity rate change (or β-value) is mapped on 0.1x0.1° grid with the nearest 100 events per sample using seismicity with M>=1.6.

We observe a significant increase in the seismicity rate within the epicentral region of the M7.9 event (node A). A less sharp decrease in the seismicity rate is observed ~100 km north of the M7.9 epicenter (node B). Seismicity rate change (or β-value) is mapped on 0.1x0.1° grid with the nearest 100 events per sample using seismicity with M>=1.6. The time period 1989-2000 is compared with 2000-09/2002.
Focal mechanism data

P wave first motion and Moment tensor inversion
Stress Field: Maximum Horizontal Compressive Directions

Faulting Style:
- Strike-slip
- Normal to strike-slip
- Normal Reverse
- Reverse to strike-slip
- Unknown
Conclusions

• The M7.9 2002 Denali fault earthquake was a complex event.
• Rich aftershock dataset is still being assembled.
• It will take ~9 more years for seismicity to go back to the background level.

• The 2002 Denali earthquake is being used as a model event to forecast rupture effects in other areas, such as rupture of the San Andreas fault in California.