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Global Positioning System

e Portable Surveying Equipment
e Precision of a few millimeters in 3D
 Repeated surveys measure motion of sites




Measuring the Crust

e GPS surveys repeated over time

e Series of positions records the
motion of a point fixed to the
crust
— Plate motion
— Deformation
— Measurement noise

e Three Dimensions!




NAGA Time Series
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Rates of Motion to Hazard

e Seismic hazard and risk roughly proportional
to rates of motion

e All other things being equal, the frequency of
earthquakes of a given size on a fault is
proportional to the slip rate of the fault

— Faster slip rate means shorter recurrence time

e Deformation data also help constrain size of
seismogenic region on fault 2 maximum
earthquake size



Outline

e Example of measuring motion before, during
and after a major earthquake

— 2002 Denali fault earthquake

 What this illustrates about general properties
of faults

e Some examples from other parts of Alaska



Photo Wes Wallace, UAF
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Deformation Across Denali Fault
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Coseismic Displacements - Horizontal
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Western Part of Rupture
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Coseismic Slip Model
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What is Postseismic Deformation?

* Transient deformation triggered by an earthquake
— Afterslip on the fault zone
— Viscoelastic relaxation of the mantle or lower crust

— Poroelastic deformation associated with earthquake-
driven fluid flow (changes elastic constants)
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Displacement (meters)

A Sample Postseismic Time Series
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Postseismic Displacements
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Postseismic Displacements
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Faults




A View of a Fault

Can divide fault zone based on how fault slips
— Seismogenic Crust exhibits stick slip
— Transitional Zone may exhibit complex behavior
— Aseismic Crust exhibits stable sliding

e Crustal earthquakes involve slip of seismogenic crust
and possibly transitional zone

Seismogenic Crust: Stick Slip
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Aseismic Crust: Stable Sliding or plastic (flow) deformation *




A Simple Analogue: Spring Slider
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Friction  Elastic restoring force

e Blockis held in place by force
of friction




A Simple Analogue: Spring Slider

.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\{::>

conces . =)

Friction  Elastic restoring force

e Block is held in place by force of friction
* Moving load point increases elastic force



A Simple Analogue: Spring Slider
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Friction  Elastic restoring force

e Block is held in place by force of friction
* Moving load point increases elastic force
e Slips when elastic force exceeds friction



A Simple Analogue: Spring Slider
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FORCES - ‘

Friction  Elastic restoring force

e Block is held in place by force of friction
* Moving load point increases elastic force
e Slips when elastic force exceeds friction



Frictional Instability
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FORCES h ‘

Friction  Elastic restoring force

e Velocity-weakening (dynamic < static friction)
— F, > F; block accelerates
— Velocity increases, F; decreases; block accelerates more
— Fe decreases with slip, in few seconds F,_ < F;; block decelerates
— Velocity decreases, F; goes up; block decelerates and stops



Alternative: Stable Sliding
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Friction  Elastic restoring force

e Velocity-strengthening (dynamic > static friction)
— F, > F; block accelerates
— Velocity increases, F; increases; acceleration stops
— But velocity then remains the same
— Velocity reaches equilibrium with shear stress



A Simple “Earthquake Cycle” Model

 Based on the spring-slider analogue model
 Between earthquakes:

— Shallow fault is locked
— Deeper fault is creeping at long-term slip rate
— Stress builds up: elastic strain energy stored in crust

 During earthquake, shallowfault slips

— Stress on fault reduced

e Cycle repeats forever



Shallow Locked Fault Causes
Deformation Away from the Fault

Earth deforms as elastic body over short
timescales

Locked shallow fault + slipping deep fault
produces elastic strain in vicinity of fault
— Most important close to fault

— Far from fault, motion is same as rigid blocks

Simple numerical models allow us to compute
effects of fault slip

When there are multiple faults, it can be
difficult to separate the effects of each one.



Broad-Scale Deformation of Overriding
Plate
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Southeast Alaska Block Model
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Summary

We can measure rates of motion of Earth’s crust using
repeated GPS measurements, and relate these to slip
on faults, or models for the motion of crustal blocks.

Rates of slip on faults are directly related to seismic
hazard

GPS velocities also provide information about the
width and extent of the seismogenic region of faults
The information provided by geodesy is a bit different
from the data usually used for hazard estimation

— Methodology to fully incorporate this information into
formal seismic hazard estimates is still being developed
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Tectonic and Earthquake Effects in
Southern Alaska
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